Time and angle-resolved photoelectron spectroscopy (Tr-ARPES) can map the full band structure of a material, including both the occupied and the unoccupied bands. This makes it possible to uncover important new information about the static and dynamic properties of materials.
After exciting a material with a femtosecond laser, time-resolved ARPES can map out the normally-empty conduction band to accurately measure the bandgap. In addition, by tuning the laser excitation fluence, new states and phases in both magnetic and quasi-2D charge density wave (CDW) materials can be uncovered.
ARPES is arguably the most powerful method for probing the electronic structure of solids to gain insight into a number of properties such as conductivity, magnetoresistance, superconductivity and magnetism laying the framework for applications ranging from solar cells, photocathodes and catalysis to spintronics, topological materials and quantum technologies.